MIT Press (2014)Īzadi, S., Fisher, M., Kim, V., et al.: Multi-content GAN for few-shot font style transfer (2017)īhunia, A.K., Bhunia, A.K., Banerjee, P., et al.: Word level font-to-font image translation using convolutional recurrent generative adversarial networks (2018) In: International Conference on Neural Information Processing Systems. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. Gregor, K., Danihelka, I., Graves, A., et al.: DRAW: a recurrent neural network for image generation. Lian, Z., Zhao, B., Chen, X., Xiao, J.: EasyFont: a style learning-based system to easily build your large-scale handwriting fonts. Style_Migration_For_Artistic_Font_With_CNN (2017). Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. Velek, O., Liu, C.L., Nakagawa, M.: Generating realistic Kanji character images from on-line patterns (2001) Hunter, J., Lagoze, C., Giles, L., et al.: Proceedings of the 10th Annual Joint Conference on Digital Libraries Zhang, J., Mao, G., Lin, H., Yu, J., Zhou, C.: Outline font generating from images of ancient chinese calligraphy. Xu, S., Lau, F.C.M., Cheung, W.K., et al.: Automatic generation of artistic Chinese calligraphy. Wong, H.T.F., Ip, H.H.S.: Virtual brush: a model-based synthesis of Chinese calligraphy. Lee, J.: Simulating oriental black-ink painting. In: Conference on Computer Graphics & Interactive Techniques (1986)